

CLERODANE DERIVATIVES FROM *GRANGEA MADERASPATANA*

PAHUP SINGH, SUNITA JAIN and JASMIN JAKUPOVIC*

Department of Chemistry, University of Rajasthan, Jaipur 302004, India; *Institute of Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F.R.G

(Received 29 June 1987)

Key Word Index—*Grangea maderaspatica*; Compositae, diterpenes, clerodane derivatives; *nor*-diterpenes, *seco*-clerodanes

Abstract—The aerial parts of *Grangea maderaspatica* afforded in addition to compounds isolated previously eight new ones, five clerodane derivatives, a *nor*-clerodane, a *seco*-clerodane and *nor*-*seco*-clerodane. The structures were elucidated by high field NMR spectroscopic methods.

INTRODUCTION

The aerial parts of *Grangea maderaspatica* Poir. have been investigated chemically. In addition to acetylenic compounds, flavones and sesquiterpenes some characteristic diterpenes like hardwickiic acid, the corresponding 1,2-dihydro derivative and centipedic acid were reported [1, 2]. A reinvestigation afforded several further compounds. The results are discussed in this paper.

RESULTS AND DISCUSSION

The extract of the aerial parts of *G. maderaspatica* afforded in addition to compounds isolated previously [1, 2] phytol, lupeol, *p*-hydroxybenzoic acid, the phenyl alanine derivative 11 [3], the diterpenes hardwickiic acid and strictic acid [4], and the corresponding 15,16-butenolides [5] 2, 3 and 5-10 which were isolated as their methyl esters.

The structure of 2a was deduced from its ¹H NMR spectrum (Table 1) which was close to that of the corresponding alcohol 1a [1]. As expected the H-2 signal was shifted downfield (δ 5.42, *ddd*) and an acetoxy methyl singlet (δ 2.08) was present.

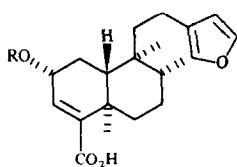
The ¹H NMR spectrum of 3a (Table 1) was close to that of 4a [1, 4]. However, several signals were slightly different. Spin decoupling allowed the assignment of nearly all signals and by NOE difference spectroscopy the configurations at all chiral centers could be determined. Clear effects between H-19 and H-10 (10%), H-17 and H-10 (6%), H-20 and H-17 (5%), H-10 (12%) and H-2 (7%) required a *cis*-relationship of H-10, H-17, H-19 and H-20.

The molecular formula of 5 and its methyl ester 5a indicated that this diterpene differed from the known 2-desoxy derivative of 1 [1, 2] by one additional oxygen. The ¹H NMR spectrum (Table 1) indicated that 5a was the corresponding 15,16-butenolide. Accordingly, the signals of the furan protons were replaced by a triplet at δ 7.09 and a two proton quartet at 4.76 while the remaining signals were nearly identical with those of the corresponding furan derivative [1, 2].

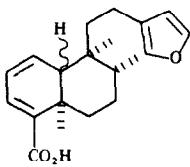
The ¹H NMR spectrum of 6a (Table 1) was close to that of 5a. However, the two proton signal at δ 4.76 was replaced by a broadened singlet at δ 5.75 (1H) and two additional methoxy signals were visible (δ 3.58 and 3.57). Furthermore, the H-17 signal was doubled. Accordingly, the epimeric 15-methoxy derivatives of 5a were present which could not be separated.

The ¹H NMR spectrum of 7a (Table 1) indicated that again epimeric 15-methoxy derivatives were present which differed from 6a by an additional 1,2-double bond. Therefore the spectrum was in part close to that of 4a and 6a. Again the H-17 doublet was split while all other signals were identical for both epimers.

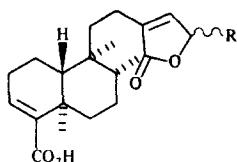
The ¹H NMR spectrum of 8a (Table 1) was in part close to that of 5a. However, two methoxy signals and the molecular formula ($C_{19}H_{30}O_4$) required the presence of a *nor*-clerodane. The absence of signals for furan protons and the fragmentation pattern in the mass spectrum showed that a methyl propionate side chain was at C-9.

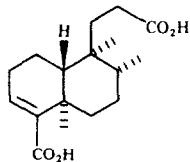

The ¹H NMR spectrum of 9a (Table 1) was close to that of methyl strictic acid ester [1, 4] and in part to that of 6a indicating that a 15-methoxy strictic acid derivative with a 15,16-butenolide group was present. As none of the signals were doubled most probably only one epimer was present. The relative configuration at C-15 could not be determined.

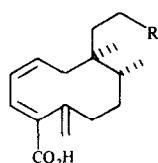
The ¹H NMR spectrum of 10a (Table 1) and its molecular formula indicated that again a *nor*-diterpene was present. Accordingly, similar fragments as in the case of 8a were observed.


The isolation of strictic acid and the related compounds 9 and 10 again supports the proposed relevance of the dienes 3 and 4 as a precursor of strictic acid [4].

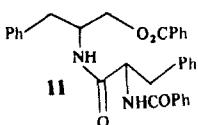
EXPERIMENTAL


The air-dried aerial parts (1 kg, supplied by M/S United Chemicals and Allied Products, Calcutta, voucher deposited at RUBL, Herbarium Jaipur, India) were extracted with Et_2O -petrol-MeOH (1:1:1) at room temp for 24 hr. Evapor-


1 R = H
2 R = Ac


3 10a-H
4 10b-H

5 R = H
6 R = OMe
7 R = OMe
 Δ^4



8

9 R = -OMe
10 R = CO₂H

1a–10a are the corresponding methyl esters

12 R = H
13 R = Ac

ation of the solvent at red. pres. furnished a greenish semi-solid mass which was dissolved in 200 ml MeOH and left overnight in the refrigerator. After filtration, the filtrate was concd and chromatographed over silica gel and gave the following fractions. Fraction 1 (petrol), Fr. 2 (petrol-Et₂O, 3:1), Fr. 3 (petrol-Et₂O, 1:1) and Fr. 4 (Et₂O). Fraction 1 displayed a single spot on TLC (petrol) and gave 20 mg of α -humulene. Fraction 2 was a yellowish syrupy liquid and separated on TLC (C₆H₆-CH₂Cl₂, 1:1) affording 100 mg of phytol, 5 mg of 3-hydroxy-8-acetoxypentadeca-1,9,14-trien-4,6-diyne 13, 20 mg of lupeol and 200 mg of a complex mixture of diterpene acids. Therefore it was subjected to methylation with ethereal CH₂N₂ and followed by the usual work-up. Its separation on TLC was again difficult. It was finally separated by HPLC (MeOH-H₂O, 9:1) RP 18 (analytical) furnishing 15 mg 3a (R, 11.8 min), 50 mg of strictic acid methyl ester (R, 12.7 min), 85 mg mixture of centipedic acid methyl ester and 4a (R, 15 min) and 50 mg of hardwickic acid methyl ester (R, 16.6 min). Fraction 3 on TLC

(C₆H₆-CH₂Cl₂-Et₂O, 4:5:4.5:1) gave 3 mg of 3,8-dihydroxypentadeca-1,9,14-trien-4,6-diyne (12), 7 mg of *p*-hydroxybenzoic acid and a complex mixture of diterpene lactones. The latter was subjected to methylation with CH₂N₂ and separated by HPLC (MeOH-H₂O, 9:1) affording 10 mg of 9a (R, 6.6 min), 25 mg of a mixture of 6a and 7a (R, 7.2 min) (which could only be separated by HPLC giving 15 mg of 6a and 8 mg of 7a), 12 mg of 10a (R, 7.9 min), 5 mg of 8a (R, 9.4 min) and 21 mg of 2a (R, 12.4 min). Fraction 4 was a yellowish solid mass and separated on TLC (C₆H₆-CH₂Cl₂-Et₂O, 1:1:1) yielding 65 mg of a mixture of 5,3-dihydroxy-3,6,7,4',5'-pentamethoxyflavone and lactone 5a (R, 0.35), which was further separated by HPLC (MeOH-H₂O, 9:1), 10 mg of the 15-desmethoxy derivative of 9a (R, 0.30), 7 mg of 11 (R, 0.40) and 20 mg of 5-hydroxy-3,6,7,3',4',5'-hexamethoxyflavone (R, 0.42).

2a-Acetoxyhardwickic acid (2) Isolated as its methyl ester 2a. Colourless gum, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 1760, 1730, 1715 (C=C-CO₂R), MS m/z (rel int) 388 224 [M]⁺ (12) (calc for C₂₃H₃₂O₅ 388 224), 346 [M - ketene]⁺ (12), 345 [M-MeCO]⁺ (22), 328 [M-AcOH]⁺ (4), 314 [345-OMe]⁺ (8), 313 [345-MeOH]⁺ (9), 299 [314-Me]⁺ (6), 95 (34), 81 (38) and 61 (100), $[\alpha]_D$ -11° (CHCl₃, c 2.07)

10-epi-Nudoresedic acid (3) Isolated as its methyl ester 3a. Colourless gum, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 1700 (C=C-C=C-CO₂R), MS m/z (rel int) 328 203 [M]⁺ (8) (calc for C₂₁H₂₈O₃ 328 203), 313 [328-Me]⁺ (8), 297 [M-OMe]⁺ (4), 285 [313-CO]⁺ (10), 151 (98) and 81 (100), $[\alpha]_D$ -66.1° (CHCl₃, c 1.0)

16-Oxo-15,16H-hardwickic acid (5) Isolated as its methyl ester 5a. Colourless gum, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 1770 (γ -lactone), 1715 (C=C-CO₂R), MS m/z (rel int) 314 188 [M-MeOH]⁺ (100) (calc for C₂₀H₂₆O₃ 314 188), 315 [M-OMe]⁺ (20), 299 [314-Me]⁺ (2), 271 [299-CO]⁺ (10), 139 (30), 107 (26) and 61 (50), $[\alpha]_D$ -62° (CHCl₃, c 1.38)

15-Methoxy-16-oxo-15,16H-hardwickic acid (6) Isolated as its methyl ester 6a. Colourless gum, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 1780 (γ -lactone), 1710 (C=C-CO₂R), MS m/z (rel int) 344 198 [M-MeOH]⁺ (20) (calc for C₂₁H₂₈O₄ 344 198), 329 [344-Me]⁺ (20), 297 [329-MeOH]⁺ (1) and 61 (100), $[\alpha]_D$ -30.8° (CHCl₃, c 0.37)

15-Methoxy-16-oxo-nudoresedic acid (7) Isolated as its methyl ester 7a. Colourless gum, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 1775 (γ -lactone), 1710 (C=C-C=C-CO₂R), MS m/z (rel int) 374 209 [M]⁺ (2) (calc for C₂₂H₃₀O₅ 374 209), 342 [M-OMe]⁺ (30), 327 [342-Me]⁺ (90), 295 [327-MeOH]⁺ (20) and 128 (100), $[\alpha]_D$ -120.8° (CHCl₃, c 0.23)

nor-Hardwickic acid (8) Isolated as its methyl ester 8a. Colourless gum, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 1730 (CO₂R), 1710 (C=C-CO₂R), MS m/z (rel int) 322 214 [M]⁺ (5) (calc for C₁₉H₃₀O₄ 322 214), 291 [M-OMe]⁺ (20), 290 [M-MeOH]⁺ (100), 275 [290-Me]⁺ (5), 260 [275-Me]⁺ (4), 235 [M-CH₂CH₂CO₂Me]⁺ (12), 203 [235-MeOH]⁺ (20), 175 [203-CO]⁺ (20) and 69 (100), $[\alpha]_D$ -36° (CHCl₃, c 0.10)

15-Methoxy-16-oxo-15,16H-strictic acid (9) Isolated as its methyl ester 9a. Colourless gum, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 1780 (γ -lactone), 1720 (C=C-C=C-CO₂R), 1250, MS m/z (rel int) 374 209 [M]⁺ (8) (calc for C₂₂H₃₀O₅ 374 209), 343 [M-OMe]⁺ (10), 342 [M-MeOH]⁺ (12), 327 [342-Me]⁺ (6), 310 [342-MeOH]⁺ (8) and 61 (100), $[\alpha]_D$ -135° (CHCl₃, c 0.24)

nor-Strictic acid (10) Isolated as its methyl ester 10a. Colourless gum, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 1730 (CO₂R), 1710 (C=C-C=C-CO₂R), MS m/z (rel int) 320 198 [M]⁺ (8) (calc for C₁₉H₂₈O₄ 320 198), 289 [M-OMe]⁺ (12), 288 [M-MeOH]⁺ (18), 273 [288-Me]⁺ (8), 256 [288-MeOH]⁺ (10), 201 [288-CH₂CH₂CO₂Me]⁺ (24), 173 [201-CO]⁺ (30) and 55 (100), $[\alpha]_D$ -26° (CHCl₃, c 0.41)

Table 1 ^1H NMR spectral data of compounds **2a**, **3a** and **5a**–**10a** (CDCl_3 , 400 MHz, TMS as internal standard)

H	2a*	3a†	5a	6‡	7a‡	8a	9a	10a
1	+	6.01 br dd	+	+	6.15 m	+	5.40 br dd	5.35 br dd
2	5.42 ddd	6.18 br dd	+	+		+	5.93 br d	5.93 br d
3	6.42 br d	6.64 br d	6.60 br dd	6.60 br dd	6.73 m	6.58 dd	7.25 ddd 2.26 br dd 1.78 br d	7.25 ddd 2.22 br dd +
10	+	2.15 br d	+	+	2.29 br s	+		
14	6.30 br s	6.20 br s	7.09 tt	6.76 dt	6.75 dt	—	6.77 br s	—
15	7.34 dd	7.31 dd	4.76 dt	5.75 dt	5.74 dt	—	5.74 br s	—
16	7.23 br s	7.13 br s	—	—	—	—	—	—
17	0.86 d	1.02 d	0.83 d	0.81(0.82) d	0.87(0.86) d	0.84 d	0.78 d	0.81 d
19	1.35 s	1.17 s	1.26 s	1.27 s	1.08 s	1.27 s	5.06 br s 4.84 br s	5.06 br s 4.84 br s
20	0.78 s	0.92 s	0.78 s	0.77 s	0.91 s	0.79 s		0.73 s
OMe	3.70 s	3.72 s	3.68 s	3.68 s	3.72 s	3.68 s	3.77 s	3.77 s
				3.58(3.57) s	3.57 s	3.66 s	3.57 s	3.69 s

+ Unassigned multiplets

*OAc: 2.08 s.

†H-6 α 1.40 ddd, H-6 β 2.48 ddd, H-7 α 1.24 dddd, H-7 β 1.62 m, H-8 1.84 ddq, H-11 2.14 ddd, H-11' 1.60 m, H-12 2.24 ddd, H-12' 2.07 ddd.

‡values in parenthesis for epimer

J [Hz]. 8,17 = 7, compounds **2a** and **3a**: 15,16 = 15,17 = 1.5; compound **2a**: 1,2 = 2, 1',2 = 7, 2,3 = 2.5; compound **3a** 1,2 = 10; 1,10 = 2,3 = 5.5, 6 α ,6 β = 6 α ,7 β = 7 α ,7 β = 13.5; 6 α ,7 α = 6 β ,7 α = 6 β ,7 β = 7 α ,8 = 7 β ,8 = 3.5, 11,11' = 11,12 = 12,12' = 11',12' = 13, 11,12' = 11',12 = 5; compounds **5a**, **6a** and **8a**: 2,3 = 3; 2',3 = 4, compounds **5a**–**7a**: 12,14 = 12,15 = 14,15 = 1.5, compounds **9a** and **10a**: 1,2 = 1,10 ≈ 12; 1,3 = 2,3 = 3,10' ≈ 2.5.

REFERENCES

1. Pandey, R. C., Singhal, A. K., Barua, N. C., Sharma, R. P., Baruah, J. N., Watanabe, K., Kulanthaivel, P. and Herz, W. (1984) *Phytochemistry* **23**, 391.

2. Bohlmann, F. and Mahanta, P. K. (1979) *Phytochemistry* **18**, 1067.

3. Talapatra, S. K., Pal, M. K., Mallik, A. K. and Talapatra, B. (1983) *J. Nat. Prod.* **46**, 140.

4. Bohlmann, F. and Fritz, U. (1978) *Phytochemistry* **17**, 1769.

5. Singh, P., Sharma, M. C., Joshi, K. C. and Bohlmann, F. (1985) *Phytochemistry* **24**, 190.